Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Life (Basel) ; 14(2)2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38398700

ABSTRACT

The mammary gland of mammals can generate numerous bioactive proteins. To express the human amylin protein in the mammary glands of domestic animals, we engineered a transgenic mammary gland bioreactor. For this study, we produced transgenic mice through prokaryotic microinjection. RT-PCR, qPCR, and Western blotting confirmed the presence of transgenes in the mice. The ELISA assay indicated an amylin yield of approximately 1.44 µg/mL in the mice milk. Further research revealed that consuming milk containing amylin resulted in a slight, but insignificant enhancement in food consumption, blood sugar equilibrium, and glucose tolerance. The influence of amylin-fortified milk on the abundance of fecal strains in mice was examined, and a significant difference in the quantity of strains needed for fatty acid synthesis and metabolism was discovered. The amylin protein gathered from humans is safe to consume, as no harmful effects were detected in the mice. Our study examined the production of human amylin using a new safety strategy that could potentially alleviate diabetic symptoms in the future through oral administration of milk containing amylin.

2.
Adv Sci (Weinh) ; 11(3): e2300702, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38036415

ABSTRACT

Cattle and the draught force provided by its skeletal muscle have been integral to agro-ecosystems of agricultural civilization for millennia. However, relatively little is known about the cattle muscle functional genomics (including protein coding genes, non-coding RNA, etc.). Circular RNAs (circRNAs), as a new class of non-coding RNAs, can be effectively translated into detectable peptides, which enlightened us on the importance of circRNAs in cattle muscle physiology function. Here, RNA-seq, Ribosome profiling (Ribo-seq), and peptidome data are integrated from cattle skeletal muscle, and detected five encoded peptides from circRNAs. It is further identified and functionally characterize a 907-amino acids muscle-specific peptide that is named circNEB-peptide because derived by the splicing of Nebulin (NEB) gene. This peptide localizes to the nucleus and cytoplasm and directly interacts with SKP1 and TPM1, key factors regulating physiological activities of myoblasts, via ubiquitination and myoblast fusion, respectively. The circNEB-peptide is found to promote myoblasts proliferation and differentiation in vitro, and induce muscle regeneration in vivo. These findings suggest circNEB-peptide is an important regulator of skeletal muscle regeneration and underscore the possibility that more encoding polypeptides derived by RNAs currently annotated as non-coding exist.


Subject(s)
Multiomics , Muscle Proteins , RNA, Circular , Cattle , Animals , RNA, Circular/genetics , RNA, Circular/metabolism , Ecosystem , Muscle, Skeletal , Muscle Development/genetics , Peptides/metabolism
3.
Microbiome ; 11(1): 219, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37779211

ABSTRACT

BACKGROUND: Goat is an important livestock worldwide, which plays an indispensable role in human life by providing meat, milk, fiber, and pelts. Despite recent significant advances in microbiome studies, a comprehensive survey on the goat microbiomes covering gastrointestinal tract (GIT) sites, developmental stages, feeding styles, and geographical factors is still unavailable. Here, we surveyed its multi-kingdom microbial communities using 497 samples from ten sites along the goat GIT. RESULTS: We reconstructed a goat multi-kingdom microbiome catalog (GMMC) including 4004 bacterial, 71 archaeal, and 7204 viral genomes and annotated over 4,817,256 non-redundant protein-coding genes. We revealed patterns of feeding-driven microbial community dynamics along the goat GIT sites which were likely associated with gastrointestinal food digestion and absorption capabilities and disease risks, and identified an abundance of large intestine-enriched genera involved in plant fiber digestion. We quantified the effects of various factors affecting the distribution and abundance of methane-producing microbes including the GIT site, age, feeding style, and geography, and identified 68 virulent viruses targeting the methane producers via a comprehensive virus-bacterium/archaea interaction network. CONCLUSIONS: Together, our GMMC catalog provides functional insights of the goat GIT microbiota through microbiome-host interactions and paves the way to microbial interventions for better goat and eco-environmental qualities. Video Abstract.


Subject(s)
Goats , Microbiota , Animals , Archaea/genetics , Bacteria/genetics , Gastrointestinal Tract/microbiology , Methane
4.
Cell Tissue Res ; 393(1): 149-161, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37221302

ABSTRACT

The formation of skeletal muscle is a complex process that is coordinated by many regulatory factors, such as myogenic factors and noncoding RNAs. Numerous studies have proved that circRNA is an indispensable part of muscle development. However, little is known about circRNAs in bovine myogenesis. In this study, we discovered a novel circRNA, circ2388, formed by reverse splicing of the fourth and fifth exons of the MYL1 gene. The expression of circ2388 was different between fetal and adult cattle muscle. This circRNA is 99% homologous between cattle and buffalo and is localized in the cytoplasm. Thoroughly, we proved that circ2388 had no effect on cattle and buffalo myoblast proliferation but promotes myoblast differentiation and myotube fusion. Furthermore, circ2388 in vivo stimulated skeletal muscle regeneration in mouse muscle injury model. Taken together, our findings suggest that circ2388 promotes myoblast differentiation and promotes the recovery and regeneration of damaged muscles.


Subject(s)
Myoblasts , RNA, Circular , Mice , Animals , Cattle , Myoblasts/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Buffaloes , Cell Proliferation/genetics , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/injuries , Muscle Development/genetics , Cell Differentiation
5.
Cell Tissue Res ; 392(2): 605-620, 2023 May.
Article in English | MEDLINE | ID: mdl-36656346

ABSTRACT

Many studies have shown that circRNAs and miRNAs play important roles in many different life processes. However, the function of circRNAs in spermatogenesis remains unknown. Here, we aimed to explore the mechanisms whereby circRNA-miRNAs-mRNAs regulate abnormal m6A methylation in GC-1spg spermatogonia. We first reduced m6A methylation in GC-1spg whole cells after knocking down the m6A methyltransferase enzyme, METTL3. Then, we performed circRNA- and miRNA-seq on GC-1spg cells with low m6A methylation and identified 48 and 50 differentially expressed circRNAs and miRNAs, respectively. We also predicted the targets of the differentially expressed miRNAs by using Miranda software and further constructed the differentially expressed circRNA-differentially expressed miRNA-mRNA ceRNA network. GO analysis was performed on the differentially expressed circRNAs and miRNA-targeted mRNAs, and an interaction network between the proteins of interest was constructed using Cytoscape. The final GO analysis showed that the target mRNAs were involved in sperm formation. Therefore, a PPI network was subsequently constructed and 2 hub genes (H2afx and Dnmt3a) were identified. In this study, we constructed a ceRNA network and explored the regulatory roles of circRNAs and miRNAs in the pathogenesis of abnormal spermatogenesis caused by low levels of methylated m6A. Also, we identified two pivotal genes that may be key factors in infertility caused by abnormal m6A methylation. This may provide some ideas for the treatment of infertility resulting from abnormal spermatogenesis.


Subject(s)
Infertility , MicroRNAs , Male , Humans , Methylation , RNA, Circular/genetics , Semen , MicroRNAs/genetics , RNA, Messenger/genetics , Spermatogenesis/genetics , Methyltransferases
6.
Mol Biol Evol ; 40(1)2023 01 04.
Article in English | MEDLINE | ID: mdl-36585823

ABSTRACT

Pangolins are one of nature's most fascinating species being scales covered and myrmecophagous diet, yet relatively little is known about the molecular basis. Here, we combine the multi-omics, evolution, and fundamental proteins feature analysis of both Chinese and Malayan pangolins, highlighting the molecular mechanism of both myrmecophagous diet and scale formation, representing a fascinating evolutionary strategy to occupy the unique ecological niches. In contrast to conserved organization of epidermal differentiation complex, pangolin has undergone large scale variation and gene loss events causing expression pattern and function conversion that contribute to cornified epithelium structures on stomach to adapt myrmecophagous diet. Our assemblies also enable us to discover large copies number of high glycine-tyrosine keratin-associated proteins (HGT-KRTAPs). In addition, highly homogenized tandem array, amino content, and the specific expression pattern further validate the strong connection between the molecular mechanism of scale hardness and HGT-KRTAPs.


Subject(s)
Genome , Pangolins , Animals , Diet
7.
Biomed Res Int ; 2022: 4472940, 2022.
Article in English | MEDLINE | ID: mdl-36408285

ABSTRACT

The sequenced data availability opened new horizons related to buffalo genetic control of economic traits and genomic diversity. The visceral organs (brain, liver, etc.) significantly involved in energy metabolism, docility, or social interactions. We performed swamp buffalo transcriptomic profiling of 24 different tissues (brain and non-brain) to identify novel transcripts and analyzed the differentially expressed genes (DEGs) of brain vs. non-brain tissues with their functional annotation. We obtained 178.57 Gb clean transcriptomic data with GC contents 52.77%, reference genome alignment 95.36%, exonic coverage 88.49%. Totally, 26363 mRNAs transcripts including 5574 novel genes were obtained. Further, 7194 transcripts were detected as DEGs by comparing brain vs. non-brain tissues group, of which 3,999 were upregulated and 3,195 downregulated. These DEGs were functionally associated with cellular metabolic activities, signal transduction, cytoprotection, and structural and binding activities. The related functional pathways included cancer pathway, PI3k-Akt signaling, axon guidance, JAK-STAT signaling, basic cellular metabolism, thermogenesis, and oxidative phosphorylation. Our study provides an in-depth understanding of swamp buffalo transcriptomic data including DEGs potentially involved in basic cellular activities and development that helped to maintain their working capacity and social interaction with humans, and also, helpful to disclose the genetic architecture of different phenotypic traits and their gene expression regulation.


Subject(s)
Buffaloes , Transcriptome , Animals , Humans , Transcriptome/genetics , Buffaloes/genetics , Phosphatidylinositol 3-Kinases/genetics , Gene Expression Profiling , Gene Expression Regulation
8.
Epigenetics ; 17(13): 2296-2317, 2022 12.
Article in English | MEDLINE | ID: mdl-36043316

ABSTRACT

Buffalo holds an excellent potential for beef production, and circRNA plays an important role in regulating myogenesis. However, the regulatory mechanism of circRNAs during buffalo skeletal muscle development has not been fully explored. In this study, circRNA expression profiles during the proliferation and differentiation stages of buffalo myoblasts were analysed by RNA-seq. Here, a total of 3,142 circRNAs candidates were identified, and 110 of them were found to be differentially expressed in the proliferation and differentiation stages of buffalo myoblast libraries. We focused on a 347 nt circRNA subsequently named circCLTH. It consists of three exons and is expressed specifically in muscle tissues. It is a highly conserved non-coding RNA with about 95% homology to both the human and the mouse circRNAs. The results of cell experiments and RNA pull-down assays indicated that circCLTH may capture PLEC protein, promote the proliferation and differentiation of myoblasts as well as inhibit apoptosis. Overexpression of circCLTH in vivo suggests that circCLTH is involved in the stimulation of skeletal muscle regeneration. In conclusion, we identified a novel noncoding regulator, circCLTH, that promotes proliferation and differentiation of myoblasts and skeletal muscles.


A new highly conserved circRNA was identified during muscle developmentCircCLTH promotes proliferation and differentiation of myoblastsCircCLTH promoted muscle damage repair in miceCircCLTH may target the PLEC protein.


Subject(s)
MicroRNAs , RNA, Circular , Cattle , Humans , Mice , Animals , RNA, Circular/genetics , Buffaloes/genetics , Buffaloes/metabolism , MicroRNAs/genetics , DNA Methylation , Muscle Development/genetics , Cell Differentiation/genetics , Muscle, Skeletal/metabolism , Regeneration/genetics , Cell Proliferation/genetics
9.
Gigascience ; 122022 12 28.
Article in English | MEDLINE | ID: mdl-37589307

ABSTRACT

BACKGROUND: The swamp buffalo (Bubalus bubalis carabanesis) is an economically important livestock supplying milk, meat, leather, and draft power. Several female buffalo genomes have been available, but the lack of high-quality male genomes hinders studies on chromosome evolution, especially Y, as well as meiotic recombination. RESULTS: Here, a chromosome-level genome with a contig N50 of 72.2 Mb and a fine-scale recombination map of male buffalo were reported. We found that transposable elements (TEs) and structural variants (SVs) may contribute to buffalo evolution by influencing adjacent gene expression. We further found that the pseudoautosomal region (PAR) of the Y chromosome is subject to stronger purification selection. The meiotic recombination map showed that there were 2 obvious recombination hotspots on chromosome 8, and the genes around them were mainly related to tooth development, which may have helped to enhance the adaption of buffalo to inferior feed. Among several genomic features, TE density has the strongest correlation with recombination rates. Moreover, the TE subfamily, SINE/tRNA, is likely to play a role in driving recombination into SVs. CONCLUSIONS: The male genome and sperm sequencing will facilitate the understanding of the buffalo genomic evolution and functional research.


Subject(s)
Bison , Semen , Male , Female , Animals , Genomics , Buffaloes/genetics , Chromosomes
10.
Mol Ther Nucleic Acids ; 24: 352-368, 2021 Jun 04.
Article in English | MEDLINE | ID: mdl-33868781

ABSTRACT

Skeletal muscle development is a complex and highly orchestrated biological process mediated by a series of myogenesis regulatory factors. Numerous studies have demonstrated that circular RNAs (circRNAs) are involved in muscle differentiation, but the exact molecular mechanisms involved remain unclear. Here, we analyzed the expression of circRNAs at the adult and embryo development stages of cattle musculus longissimus. A stringent set of 1,318 circRNAs candidates were identified, and we found that 495 circRNAs were differentially expressed between embryonic and adult tissue libraries. We subsequently focused on one of the most downregulated circRNAs (using the adult stage expression as control), and this was named muscle differentiation-associated circular RNA (circMYBPC1). With RNA binding protein immunoprecipitation (RIP) and RNA pull-down assays, circMYBPC1 was identified to promote myoblast differentiation by directly binding miR-23a to relieve its inhibition on myosin heavy chain (MyHC). In addition, RIP assays demonstrated that circMYBPC1 could directly bind MyHC protein. In vivo observations also suggested that circMYBPC1 may stimulate skeletal muscle regeneration after muscle damage. These results revealed that the novel non-coding circRNA circMYBPC1 promotes differentiation of myoblasts and may promote skeletal muscle regeneration. Our results provided a basis for in-depth analysis of the role of circRNA in myogenesis and muscle diseases.

11.
J Agric Food Chem ; 69(1): 592-601, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33346638

ABSTRACT

Beef is considered to be a good quality meat product because it contains linoleic acid and specific proteins, which can bring significant benefits to health. Circular RNAs (circRNAs) have been reported to regulate skeletal myogenesis. RNA-seq was used to investigate the circRNA molecular regulatory mechanisms with respect to differences in muscle quality between buffalo and cattle. A total of 10,449 circRNA candidates were detected, and 1128 of these were found to be differentially expressed between cattle and buffalo muscle tissue libraries. Differentially expressed 23 circRNAs were verified by qPCR. CircEch1, one of the most up-regulated circRNAs during muscle development, was subsequently characterized. CCK-8 (65.05 ± 2.33%, P < 0.0001), EdU (72.99 ± 0.04%, P < 0.001), and Western blotting assays showed that overexpression of circEch1 inhibited the proliferation of bovine myoblasts but promoted differentiation. In vivo studies suggested that circEch1 stimulates skeletal muscle regeneration. These results demonstrate that the novel regulator circEch1 induces myoblast differentiation and skeletal muscle regeneration. They also provide new insights into the mechanisms of circRNA regulation of beef quality.


Subject(s)
Cattle/genetics , Muscle Development , Muscle, Skeletal/cytology , RNA, Circular/metabolism , Animals , Buffaloes , Cattle/growth & development , Cattle/metabolism , Cell Proliferation , Muscle, Skeletal/growth & development , Muscle, Skeletal/metabolism , Myoblasts/cytology , Myoblasts/metabolism , RNA, Circular/genetics
12.
Front Genet ; 11: 98, 2020.
Article in English | MEDLINE | ID: mdl-32174968

ABSTRACT

Buffalo meat consist good qualitative characteristics as it contains "thined tender" which is favorable for cardavascular system. However, the regulatory mechanisms of long non-coding RNA (lncRNA), differences in meat quality are not well known. The chemical-physical parameters revealed the muscle quality of buffalo that can be equivalent of cattle, but there are significant differences in shearing force and muscle fiber structure. Then, we examined lncRNA expression profiles of buffalo and cattle skeletal muscle that provide first insights into their potential roles in buffalo myogenesis. Here, we profiled the expression of lncRNA in cattle and buffalo skeletal muscle tissues, and 16,236 lncRNA candidates were detected with 865 up-regulated lncRNAs and 1,296 down-regulated lncRNAs when comparing buffalo to cattle muscle tissue. We constructed coexpression and ceRNA networks, and found lncRNA MSTRG.48330.7, MSTRG.30030.4, and MSTRG.203788.46 could be as competitive endogenous RNA (ceRNA) containing potential binding sites for miR-1/206 and miR-133a. Tissue expression analysis showed that MSTRG.48330.7, MSTRG.30030.4, and MSTRG.203788.46 were highly and specifically expressed in muscle tissue. Present study may be used as a reference tool for starting point investigations into the roles played by several of those lncRNAs during buffalo myogenesis.

13.
Protein Pept Lett ; 26(12): 904-909, 2019.
Article in English | MEDLINE | ID: mdl-31429685

ABSTRACT

BACKGROUND: Rotavirus is the most common cause of infectious diarrhea in infants and young children around the world. The inner capsid protein VP6 has been discussed as alternative vaccine as it can induce cross-protective immune responses against different RV strai. The use of ferritin nanoparticle may enhance the immunogenicity of the subunit vaccine. OBJECTIVE: In this article, our motivation is to design and obtain a self-assemble rotavirus nanoparticle vaccine which can induce efficiency immune response. METHODS: The VP6 protein was fused with ferritin and expressed in the Escherichia coli expression system. The recombinant VP6-ferritin (rVP6-ferritin) protein was purified by His-tag affinity chromatography and fast protein liquid chromatography. Transmission electron micrographic analysis was used to detect the nanostructure of the self-assembled protein. Mice were gavage with the protein and ELISA was used to detect the titer of the VP6 specific antibody. RESULTS: The recombined VP6-ferritin was expressed in the Escherichia coli as an inclusion body form and the purified protein has similar antigenicity to rotavirus VP6. Transmission electron micrographic analysis of rVP6-ferritin exhibited spherical architecture with a uniform size distribution, which is similar to the ferritin nanocage. Immune response analysis showed that mice immunized by rVP6-ferritin protein induced 8000 (8000±1093) anti-VP6 IgG titers or 1152 (1152±248.8) anti-VP6 IgA titers. CONCLUSION: According to the above research, the rotavirus VP6-ferritin protein can be easily express and self-assemble to the nano-vaccine and induce efficiency humoral and mucosal immunity. Our research makes a foundation for the development of oral rotavirus vaccine.


Subject(s)
Antigens, Viral/immunology , Capsid Proteins/immunology , Escherichia coli/metabolism , Immunity, Mucosal/immunology , Nanoparticles , Recombinant Fusion Proteins/immunology , Rotavirus Vaccines/immunology , Rotavirus/immunology , Animals , Antibodies, Viral/immunology , Antigens, Viral/genetics , Capsid Proteins/genetics , Escherichia coli/genetics , Female , Ferritins/genetics , Humans , Mice, Inbred BALB C , Recombinant Fusion Proteins/genetics , Rotavirus Vaccines/genetics
14.
J Nanobiotechnology ; 17(1): 13, 2019 Jan 22.
Article in English | MEDLINE | ID: mdl-30670042

ABSTRACT

BACKGROUND: Rotavirus is the leading cause of severe dehydrating diarrhea in young children and the inner capsid protein VP6 is a potential vaccine candidate that can induce cross-protective immune responses against different Rotavirus strains. The use of ferritin nanoparticles as the scaffold of the antigen can improve the immunogenicity of the subunit vaccines and provide broader protection. We here present a non-live and self-assemble recombinant rotavirus VP6-ferritin (rVP6-ferritin) nanoparticle vaccine. RESULTS: The rVP6-ferritin nanoparticles were expressed in E. coli and self-assembled to uniform spherical structure which similar to ferritin, and oral administration of them induced efficient humoral and mucosal immunogenicity in mice. The nanoparticles were further transgenically expressed in the milk of mice, and pup mice breastfed by transgenic rVP6-ferritin mothers had strongly induced immunogenicity and-compared to pups breastfed by wild type mothers-the proportion of rotavirus challenged pups with diarrhea symptoms, the duration and intensity of the diarrhea, and the deleterious effects on overall growth resulting from the diarrhea were all significantly reduced. CONCLUSIONS: These results suggest that this recombinant VP6-ferritin nanoparticle vaccine can efficiently prevent the death and malnutrition induced by the rotavirus infection in infants and is a promising candidate vaccine for rotavirus.


Subject(s)
Antigens, Viral , Capsid Proteins , Ferritins , Nanoparticles , Rotavirus Infections/prevention & control , Rotavirus Vaccines/therapeutic use , Rotavirus , Animals , Antigens, Viral/genetics , Capsid Proteins/genetics , Female , Humans , Immunogenicity, Vaccine , Infant, Newborn , Mice , Mice, Inbred BALB C , Milk/chemistry , Milk/virology , Nanoparticles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...